Incidence coloring of planar graphs without adjacent small cycles
نویسندگان
چکیده
An incidence of an undirected graph G is a pair (v, e) where v is a vertex of G and e an edge of G incident with v. Two incidences (v, e) and (w, f) are adjacent if one of the following holds: (i) v = w, (ii) e = f or (iii) vw = e or f . An incidence coloring of G assigns a color to each incidence of G in such a way that adjacent incidences get distinct colors. In 2012, Yang [15] proved that every planar graph has an incidence coloring with at most ∆+ 5 colors, where ∆ denotes the maximum degree of the graph. In this paper, we show that ∆ + 4 colors suffice if the graph is planar and without a C3 adjacent to a C4. Moreover, we prove that every planar without C4 and C5 and maximum degree at least 5 admits an incidence coloring with at most ∆+ 3 colors.
منابع مشابه
Group edge choosability of planar graphs without adjacent short cycles
In this paper, we aim to introduce the group version of edge coloring and list edge coloring, and prove that all 2-degenerate graphs along with some planar graphs without adjacent short cycles is group (∆(G) + 1)-edgechoosable while some planar graphs with large girth and maximum degree is group ∆(G)-edge-choosable.
متن کاملTotal coloring of planar graphs without some chordal 6-cycles
A k-total-coloring of a graph G is a coloring of vertex set and edge set using k colors such that no two adjacent or incident elements receive the same color. In this paper, we prove that if G is a planar graph with maximum ∆ ≥ 8 and every 6-cycle of G contains at most one chord or any chordal 6-cycles are not adjacent, then G has a (∆ + 1)-total-coloring.
متن کاملPlanar graphs without adjacent cycles of length at most seven are 3-colorable
We prove that every planar graph in which no i-cycle is adjacent to a j-cycle whenever 3 ≤ i ≤ j ≤ 7 is 3-colorable and pose some related problems on the 3-colorability of planar graphs.
متن کاملEdge choosability of planar graphs without small cycles
We investigate structural properties of planar graphs without triangles or without 4-cycles, and show that every triangle-free planar graph G is edge-( (G) + 1)-choosable and that every planar graph with (G) = 5 and without 4-cycles is also edge-( (G) + 1)-choosable. c © 2003 Elsevier B.V. All rights reserved.
متن کاملOn Choosability with Separation of Planar Graphs with Forbidden Cycles
We study choosability with separation which is a constrained version of list coloring of graphs. A (k, d)-list assignment L of a graph G is a function that assigns to each vertex v a list L(v) of at least k colors and for any adjacent pair xy, the lists L(x) and L(y) share at most d colors. A graph G is (k, d)-choosable if there exists an L-coloring of G for every (k, d)-list assignment L. This...
متن کامل